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The flow of an incompressible fluid through a curved wire-gauze screen of 
arbitrary shape is reconsidered. Some inconsistencies in previously published 
papers are indicated and the various approximations and linearizations (some 
of which are necessary for a complete analytic solution) are discussed and their 
inadequacies demonstrated. Attention is concentrated on the common practical 
problem of calculating the screen shape required to produce a linear shear flow 
and experimental work is presented which supports the contention that the 
theoretical solutions proposed by Elder (1959) - subsequently discussed by 
Turner (1969) and Livesey & Laws (1973) - and Lau & Baines (1968) are in- 
adequate, although, for the case of small shear, Elder’s theory appears to be 
satisfactory. Since, in addition, there are inevitable difficulties concerning both 
the value of the deflexion coefficient appropriate to any particular screen and 
inhomogeneities in the screen itself, i t  is concluded that the preparation of a 
curved screen to produce the commonly required moderate to large linear shear 
flow is bound to be somewhat empirical and should be attempted with caution. 

1. Introduction 
In  recent years there has been a considerable upsurge of interest in what is 

rather loosely termed ‘architectural ’ aerodynamics. Although there are now 
well-established methods of simulating a neutral atmospheric boundary layer, 
to gain a proper understanding of the bluff-body flows typical of real-life 
situations it is usually desirable, and indeed probably necessary, to investigate 
the effects of upstream turbulence and shear separately. It is evident that, 
whilst there is an increasing volume of data concerning the effects of upstream 
turbulence (of varying intensities and scales), there is much less information 
available for the case of an upstream turbulence-free shear flow. The desire to 
improve this situation led the author to investigate the various previously 
proposed methods of producing a linear shear flow in a wind tunnel. 

One of the earliest suggestions was that of Owen & Zienkiewicz (1957); they 
showed that a planar resistance with a linear variation of drag across its surface 
produced a linear sheared velocity profile when placed normal to a uniform 
incident stream. A grid of rods of the required theoretical spacing was found 
experimentally to  give a good linear profile of the correct shear. Cockrell & Lee 
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(1966) used a similar method to  produce nonlinear shear flows. A disadvantage 
of this technique is the relatively high turbulence levels produced: typically 
3-4 % even for rods of only 1 mm diameter. For the purposes described above 
it is desirable to keep turbulence levels as low as possible. Taylor & Batchelor 
(1949) showed that a gauze placed normal to  the Aow tends in general to  reduce 
any departures from non-uniformity in the flow (which is, of course, why 
screens are used in wind-tunnel settling chambers as ‘smoothing ’ screens). 
Elder (1959), who based much of his work on that of Davis (1957), was the first 
to calculate the shape of a curved gauze required to produce a linear shear 
profile and his work has stimulated some more recent workers to attempt to 
produce a linear shear flow which has an acceptably low turbulent intensity 
(typically 0.5 % or less). There are one or two errors in Elder’s paper, which have 
been pointed out and discussed by Turner (1969), Lau & Baines (1968) (whose 
own theory differs in important respects from that of Elder) and, more recently, 
Livesey & Laws (1973). Unfortunately, a careful reading of these papers reveals 
further difficulties, some of which are serious, which make i t  very difficult to 
apply the results effectively. 

Since the production of a linear shear flow is usually only an initial stage of 
an experimental study, it is frustrating to have to spend considerable time on its 
production when the impression gained from the literature is that it  is a rela- 
tively straightforward process. The present paper is therefore an attempt to  
clarify the situation by discussing the various differences and difficulties in 
previous work (particularly concerning the approximations made by Lau & 
Baines 1968). Numerical solutions are presented, the sizes of the neglected 
terms implicit in the analysis are indicated and comparisons are made with 
careful experimental measurements, thus demonstrating the limitations of the 
theory. 

2. The analysis 
The basic analysis presented by previous authors will not be restated in 

detail; we emphasize merely the differences in approach and the main assump- 
tions and results. 

For two-dimensional, inviscid, incompressible A ow the vorticity equation 
can be written as 

0 = avpx - aupy  = v2$ = p-1 agp* = f(+) (1) 

in the usual notation and where H = P+*p(u2+v2).  In the particular case of 
a uniform upstream velocity and a prescribed linear variation in the down- 
stream velocity f($) takes particularly simple forms and (1) can be solved 
directly without any assumptions concerning streamline displacements. This 
was the approach adopted by Lau & Baines (1968), who also included the effect 
of density gradients. To obtain a complete solution of the flow through the 
screen it is necessary to match the upstream and downstream solutions of (1) 
by formulating suitable gauze boundary conditions. By making gross assump- 
tions about one of the boundary conditions Lau & Baines (1968) were able to 
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FIGURE 1. Definition diagram. Suffixes 1 and 2 refer to conditions upstream 
and downstream of the gauze, respectively. 

take the streamline deff exion into account. Alternatively the streamline de- 
flexions may be assumed to be small so that the solution of (1) becomes identical 
to  the solution of the perturbation stream-function equation obtained by 
assuming small transverse displacements : 

Q29” = 0, (2) 

where @* is d e h e d  by @ = @o + @* and @o is the stream function fax upstream 
(or downstream). For more general f($) in (1) it is necessary to solve (2), and 
this was Elder’s (1959) approach. 

Mass continuity through the gauze leads directly to the first boundary condi- 
tion, which is 

where T = tan8 and figure 1 defines the notation. 

a deflexion coefficient B as 

(3) u1 = u2 -I- (v1 -v2) T, 

The screen also experiences a lift force, so that vsl +vs2. It is usual to define 

= (~sl-vs2)lvsl = g(K, @, 
where K is the gauze resistance coefficient, defined by K = Aplipu;, and Ap 
is the pressure drop across the gauze. On the basis of the evidence of Davis 
(1957), which suggests only a weak dependence on 8, all previous authors have 
assumed that B is not a function of 8. Progress without this assumption is 
extremely difficult but it is important to recognize that it is an assumption and 
in fact this, together with the difficulty of actually assigning a value for B, 
seems to be a major problem in using the theory and is discussed further in Q 4. 
The second boundary condition becomes, using (3), 

BU1T = (1 -B)v1-v2+(v1-v2)T2. (4) 

Both Elder (1959) and Lau & Baines (1968) neglect the term (vl-v2)T in (3) 
and the term (vl - v2) T2 in (4), a process which, as they recognize, is valid only 
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if T is small. Lau & Baines (1968) also drop the term BulT in (4) arguing that 
“the streamline pattern for the present case is much the same as if a screen 
normal to the ffow is used to deflect the streamlines into the required down- 
stream pattern ”. They state that ‘‘ the errors involved. . . will not be serious if 
the inclination of the screen, and hence T, is small”. However, if T is small, 
v1 and v2 will be small and in fact it  seems probable that T, v, and v2 are all 
quantities that are small to first order, so i t  is unreasonable to drop Bu, T whilst 
retaining (1 - B) v1 and v2 in (4). It is shown in Q 3 that this assumption of Lau 
& Baines (1968) leads to considerable divergence from the theory of Elder. 

The third boundary condition can be obtained either from the inviscid 
equation of motion p-lVH = U x 0, 

which leads to 

where 

p-la( AH)/ay = - u1 au_,/ay + u2 au+,/ay, (5) 

AH = H , - H 2  = Ap+&(V:1-v:2) 

(Elder 1959), or by equating the energy change along a streamline with the 
energy loss A H  at the screen. This was the procedure adopted by Lau & Baines 
(1 968) and leads to  

p-’AH = & ~ 2 - ~ - & 2 + ~  +p-’(Ap)T, (6) 

where (Ap)T is the static pressure drop from far upstream to far downstream 
(which is independent of y) and 

AH = i p  c O s v { K q  + (v; - v:)}. (7) 

Since they eliminated the gauze inclination from the first two boundary 
conditions (3) and (4), Lau & Baines (1968) were able to solve (1) with (3) and 
( 4 )  to obtain ul, vl, u2 and v2, and hence find the variation of cos26 directly from 
(6) and (7). This necessitated k i n g  ~ - l ( A p ) ~ ,  which they did by specifying the 
gauze slope as zero at one of the walls (y = 0) to satisfy the deflexion equation 
(4). However, it  is immediately obvious that the problem is now over-simplified 
since it should be equally correct to specify the gauze slope as zero at the other 
wall (y = L). Calculations show that even for small shear the solutions are 
very different (see Q 3). 

A less arbitrary approach was adopted by Elder (1959), who linearized 
cos26 by writing 

Y =  
where yo is a constant given by 

Yo 

and s is much less than unity. 

= lo1 K cos2 Bdy 

Equation (5) can now be integrated to give 

u - w  - u + m  = ro(a- 1) +BYOS, ( 8 4  

where u, = u2 = q (the approximated first boundary condition) and second- 
order terms have been neglected. The standard solution of (2) (e.g. Elder 1959) 
together with (8a) and the approximated second boundary condition, i.e. 
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Bu, T = (1  - B)  2rl - v2, lead to 

BTq = an sin nmj ( 8 b )  

(8c)  

n 

and 

where the a, are constants to be determined. Elder (1959) was able to solve (8) 
analytically for particular variations of gauze inclination (a linear and a para- 
bolic gauze). The case of more practical interest, the 8 distribution required 
for a specified linear downstream shear, is different in that s is neither zero nor 
specified and yo is not known. As Turner (1969) pointed out, the equations must 
be solved by a numerical iterative technique. The first iteration is performed 
with yo = K and s = 0. This is in fact equivalent to Elder’s analytic solution 
of (8) for a linear shear profile but he appears not to have realized that it is not 
the correct solution, in which s must be non-zero. Actually, there is an error in 
Elder’s analysis, so that even this ‘first iteration’ is not correct. Lau & Baines 
(1968) correct this error (but see appendix B), as does Maull (1969). Equations (8) 
imply an  asymmetric variation of tan 8 about the tunnel centre-line for non- 
zero s and this indicates a difficulty in Turner’s (1969) paper, in which, although 
he describes a correct procedure for a numerical solution, his plotted screen 
shapes are antisymmetric and in fact he states that “the computed gauze shape 
is practically unchanged if the resistance variation term s ( o )  is neglected”. 
This is in disagreement with the present work and that of Livesey & Laws (1973) 
and Chan (1971). Maull (1969) found experimentally that the s = 0 solution did 
not produce a good linear shear profile and he had to  adjust the gauze shape 
empirically. The final shape was, as might be expected, not antisymmetric 
about the tunnel centre-line. 

u+, - q +  (1 - B )  (u-, -4) = Can cos nny ,  
n 

3. The neglected terms 
Initial results of a numerical solution of (8) did not agree with the results 

given by Turner (1969) and it was this that actually prompted a closer investi- 
gation of the whole problem. The numerical procedure (with its associated 
difficulties) used in the present study is outlined in appendix A and will not be 
discussed here, except for the comment that for the purposes of comparison all 
solutions were obtained with a deffexion coefficient B given by 

B = 1-(1+dK)-d 

in common with previous workers. The practical validity of this relation is 
discussed in 0 4, where experimental results are considered. 

A measure of the differing results in the literature is shown in figure 2. The 
author’s numerical solution of (8) for K = 4-2 and h = 0.5, where h is the shear, 
defined by 

is compared with results of previous workers. 
It was initially thought that for small values of h the theories of Elder (1959) 

and Lau & Baines (1968) would give similar results as, presumably, the various 

(9) u + w  = u-w + h(y - S), 
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FIGURE 2. The gauze shape required for h = 0.5, K = 4.2. Previously published results 
compared with the author’s numerical solution using Elder’s (1969) theory. x , Lau & 
Baines’ (1968) theory; A. Turner’s (1969) numerical solution of (8); 0, the ‘first iteration’ 
(8 = 0) solution (appendix B or Maul1 1969); 0, Lau & Baines’ (1968) plot of the ‘first 
iteration’ solution; V,  the author’s numerical solution of (8) (Elder’s theory). 

approximations become less important. Figure 3 shows a comparison between 
the two theories for K = 2.0 and h = 0.05. The numerical solution of (8) 
(Elder’s equations) is used (with s 9 0) although of course for this case the 
‘first iteration’ (s = 0) solution is almost identical with the final solution since 
h is very small. It is apparent that there is a considerable difference between 
the two theories. As stated in 5 2, Lau & Baines could equally have satisfied the 
deflexion equation at the top wall rather than the bottom one and the resulting 
profile is included in figure 3. Section 2 indicates that the neglect of the term 
Bu,T in the second boundary condition (4) is likely to be invalid, so for the 
Lau & Baines (1968) solution this term was computed and compared with one 
of the remaining terms (w2). The results for various values of h are shown in 
figure 4. It is clear that even for small shear Bu,T is an order of magnitude 
larger than w2 (or (1 - B) wl) and in fact as hdecreases Bu,T/w,actually increases. 
The second boundary condition is therefore strongly violated and it is this that 
causes the very different result obtained by Lau & Baines. 

By contrast, the other terms neglected by both Elder (1959) and Lau & 
Baines (1968) in the boundary conditions are all small for small values of A, 
but in order to  investigate the probable range of validity of the theory it is 
necessary to  estimate the size of these neglected terms. 
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FIGURE 3. Comparison between the theories of Lau & Baines (1968) and Elder (1959) 
for low shear. h = 0.05, K = 2. 0, Elder; x , Lau & Baines; - , gauze slope zero at 
7 = 0; - - -  , gauze slope zero a t  7 = 1. 
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FIGQTRE 4. The term neglected by Lau & Baines in the second boundary condition (4). 

X ,  h = 0.5,  K = 4.2; 0, h = 0.05, K = 2 ;  0, h = 0.01, K = 2. 
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The most stringent requirement in the approximation of the gauze boundary 
conditions is that (v,-v,)T < B, 

where the velocity at the gauze has been taken as unity for convenience. For 
a linear downstream shear profile, d e k e d  by ( 9 ) ,  it can be shown, by a con- 
sideration of the basic solution of ( 2 ) ,  that  

u,+v2 = 4ha/n2 = a’, say, (10) 

m 

where a is given by a = (sin nny)/n2. 
n odd 

Manipulation of the approximated second boundary condition, i.e. 

( ~ - B ) z J , - v ~  = Bu,T E BT, 

with (10) leads to 

( ~ 1 -  ~ 2 )  T / B  = (T/(2 - B ) )  (a’ + 2T). 

We need to have an estimate of tan 0 before it is possible to  estimate the size of 
the right-hand side of (1 1). A reasonable approximation is provided by the ‘first 
iteration’ (s = 0) solution, for which an analytic expression is available for 
tan 6. This can be deduced quite simply (e.g. Maul1 1969) and is given by 

-4h 
T = -  C (sin nny)/n2 = -a’/EB, 

n2EB nodd 

where E = K / ( 2 + K - B ) .  

Hence E E {(w1-v2)T/B) = (2/EB- ~ ) U ’ ~ / { E B ( ~ - B ) ) .  ( 1 3 )  

It is worth noting that, since EB is usually significantly less than unity, E can 
be written as 

E N (hlEB)2(2-B)-1 G(y) to first order. 

Now h/EB = (h /K)  ( 2  + K - B)/B 

and, since ( 2  - K - B) /B  is only a weak function of K in the range of practical 
interest, the dominant parameter is seen to be h/K.  Livesey & Laws have in 
fact, in another paper (1972),  pointed out that given a required downstream 
velocity profile only a certain range of screen parameters will admit a real 
solution : if h/K is too large there is no real solution. This is considered further in 
appendix A, where the problems encountered in numerical solution of (8) are 
briefly discussed. 

Given the gauze parameters and the shear parameter A, (13)  gives an estimate 
of the largest term neglected in the boundary conditions. It is astraightforward, 
though lengthy, process to  show that the sum of the terms neglected in the 
AH term of the third boundary condition [ ( 5 )  or (6 ) ]  is considerably smaller 
than E.  E is plotted against h in figure 5 for K = I and K = 4. Only the centre- 
line (7 = Q) values are included and it is obvious that even with a high resist- 
ance screen e becomes quite large for moderate values of A. As a check that ( 1 3 )  



Production of a linear shear Jlow using gauze screens 697 

1 .o 

0.8 

E 
0.6 

0.4 

0.2 

0 
0.2 0.4 0.6 0.8 1 .o 

h 

FIGURE 5. Values of the largest neglected term in the boundary conditions. -, E as 
given by (13) at 7 = 0.5; unflagged symbols, maximum values of e computed from results 
of the numerical solution (s 0); flagged symbols, values of F at 71 = 0.5; m, K = 1; 
0, K = 4. 

adequately represents the size of the neglected term the exact values of 
(v,-v,)T/Bq were computed, using the final iterated values of tanB, and 
typical results are included in figure 5. As anticipated, (13) over-estimates the 
error on the centre-line but is in fact reasonably representative of the maximum 
value of the error term (which occurs at about q = 0.75 in most cases). For 
small values of A, of course, there is close agreement as the final value of T is 
not very different from the ‘first iteration’ (s = 0) value. 

It is also instructive to note the values taken by v1 and v2. Although the re- 
sults will not be presented in detail it  can be shown that the total streamline 
deflexion is relatively small, so the assumption of small streamline deflexion is 
valid over a somewhat wider range of h/K than are the approximations made 
in the boundary conditions, particularly in (4). 

We conclude that for low values of h/K (less than 0.1 say) there is no reason 
to  doubt that Elder’s theory should give good results but at higher values of 
A/K the approximations become increasingly invalid. The experimental work 
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described in the following section confirms these expectations, particularly that 
at large AlK the theory is inaccurate, a finding which agrees with that of Chan 
(1971). 

4. Experimental comparisons 
Many of the authors mentioned previously made comparisons between their 

various solutions and experimental results but meaningful comparisons are 
difficult for at least two reasons. First, it has been shown by various authors 
(e.g. Jackson 1972) that small variations in wire-gauze parameters (wire dia- 
meter and mesh size) produce significant inhomogeneities in the downstream 
velocity profile. Usually this is not a problem as smoothing screens are often 
mounted upstream of a contraction, but curved gauzes for producing linear 
shear profiles are invariably mounted in the working section. Since the turbu- 
lence levels are very low there is no effective mechanism for reducing the 
inhomogeneities, which therefore persist for a considerable distance down- 
stream. For values of the screen coefficient K greater than about 2 (correspond- 
ing to open-area ratios less than about 0.5) a particularly serious form of velocity 
inhomogeneity arises owing to  an instability of the ffow through the screen, 
usually termed ‘jet coalescence’ (Baines & Peterson 1951 ; Bradshaw 1965). 
Unless measurements are made a t  small intervals of 7, such inhomogeneities 
can be easily overlooked ; however, if closely spaced measurements are made 
there is usually considerable scatter, which may only amount to, say, 2 %  of 
the centre-line velocity but can be significant compared with the total variation 
across the working section. Inspection of the literature shows that where 
sufficient measurements have been made there is significant scatter and this 
makes it difficult to draw definite conclusions about the magnitude of the shear 
developed by the gauze. The present measurements are somewhat similar in 
this respect. 

A second difficulty associated with experimental comparisons concerns the 
value of the deffexion coefficient B. Following Elder (1959) and Turner (1969) 
the numerical solutions described in 3 3 used the relation 

which is similar to the relation proposed by Taylor & Batchelor (1949) : 

B = 1 - (1  +,/I{)-&, (14) 

B = l - l . l ( l + K ) - ~ .  (15) 

However, i t  appears that, for their experimental comparisons, most previous 
workers used values of B significantly less than those given by either of the 
above relationships. For example Elder himself states that he used a screen 
with K = 2-20 and B = 0.22, compared with the values of B = 0.365 and 
B = 0.385 which (14) and (15) would respectively give. Davis (1957) shows that 
measured values of B are almost always less than those given by (14) and (15) 
but are very scattered, although B seems to decrease slightly with K .  The 
actual measurement of B is not simple, and for the purposes of the present work 
the screen shapes were calculated using (14). It is of course a fairly simple 
matter to deduce the downstream velocity profiles for different values of B. 
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Wire Open-area 
diameter Meshes/ ratio 

Gauze SWG d (in.) in., rn ,8 = (l-rnd)* K,, Kl, 
I 33 0.010 30 0.490 2.33 1-84 
I1 29 0.0136 28 0.362 4.92 3.68 
I11 29 0.0136 18 0.570 1.55 1.16 

TABLE 1. K,,  is defined as the resistance coefficient at a Reynolds number (based on wire 
diameter) of 100, as given by Royal Aeronautical Society Data Sheet no. 02.00.01 (1963). 
K,,  is the resistance coefficient a t  a stream velocity of 15 m/s, also deduced from the 
above reference. 

All the experiments were done in a channel with an approximately 250 mm 
square cross-section mounted in an open-return wind tunnel with a (closed) 
working section of 0.27 x 0.91 x 10 m. The upstream 500 mm portion of this 
channel was specially made for each curved screen used. This arrangement 
obviated the necessity of adding a completely new working section to the 
existing wind tunnel for each screen investigated. The screens were soldered to 
brass formers mounted outside the channel. It was found necessary to apply 
considerable side tension to  ensure the correct gauze shape all across the channel 
and this was done by simply tightening bolts passed through one of the formers 
and bearing externally on the channel walls. Checks with a shaped template 
indicated that, even for the most highly curved screen, deviations from the 
required shape were everywhere less than + mm. Velocity measurements were 
made with small round-nosed Pitot tubes and standard manometers. Checks 
on the upstream velocity profile showed that the deviation from uniformity 
was less than 4 % except in the wall boundary layers, which were less than 5 yo 
of the channel height in thickness. The downstream velocity measurements 
were all made at least one channel height (about 700 wire diameters in the worst 
case) and in most cases two channel heights downstream from the screen. 

Royal Aeronautical Society Data Sheet no. 02.00.01 (1963) gives the values of 
open-area ratios p and consequent screen resistance coefficients K for a variety of 
typical screens at various Reynolds numbers Re,. A single test with a 30133 SWG 
screen (see table I )  gave a value of K within 2% of that given by the Data 
Sheet. This may have been somewhat fortuitous, but it was not felt worth 
while to undertake an exhaustive investigation since the exact value of K is 
not too critical. Indeed for the &st test case of a low shear ( A  = 0.10) a change 
of 20 % in K changes the calculated downstream extent of the gauze by about 
3 mm. Table 1 gives the relevant details of the various screens used. Because 
there is a variation of K with Reynolds number, all the values of K were evalu- 
ated for a free-stream velocity of 15 mls (corresponding to wire Reynolds 
numbers between about 250 and 350) and all the tests were performed at this 
velocity. 

For the case of linear downstream shear there has been no adequate demon- 
stration that Elder’s theory is applicable even for low shear, although the 
considerations in 8 3 suggest no reason why it should fail. This was the first 
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FIGTJRE 6. Velocity variation downstream of gauze I ( K  = 1.84) shaped to give h = 0.1 
(with B = 0.35, equation 14). x , measurements; - , required h = 0.1 profile; ---, 
theoretical profile for B = 0.2. 

objective of the experimental programme. The gauze shape required to  produce 
a linear shear defined by 

with h = 0-1 was computed for a screen with a resistance coefficient K of 
1.84 (gauze I in table 1). For this case, of course, inclusion of the s term (see 
0 3) made only a small difference to the required gauze shape. 

Figure 6 shows the downstream velocity profile actually generated by the 
gauze and it is immediately obvious that jet coalescence has occurred. It is 
clearly almost impossible to determine the actual shear developed, although a 

um-l = h(7-g) 
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FIUUFCE 7. Velocity variation downstream of gauze I1 (K = 3.68). X ,  measurements; 
--, theoretical profile for B = 0.415 [equation (14)] ; - - -, theoretical profile for B = 0.2. 

least-squares fit would show the velocity profile to be slightly closer to the line 
representing the calculated downstream profile for B = 0.2 than to the h = 0.1 
profile [corresponding to the B calculated from (14)]. 

Gauze I1 ( K  = 3.68) was fitted to the same formers and the resulting down- 
stream velocity is shown in figure 7 compared with the velocity variations (not, 
of course, exactly linear in this case) computed using B from (14) and B = 0.20. 
Again i t  seems that there is some jet coalescence although in this case the 
agreement is better for B calculated from (14). It is interesting to note that in 
the region of the wall boundary layers there is a considerable velocity excess. 
This effect was noted by Owen & Zienkiewicz (1957) and Livesey & Turner 
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FIGURE 8. Velocity variation downstream of gauze 111 (K  = 1.16). x , measurements; 
-, theoretical profile for B = 0.306 [equation (14)]; ---, theoretical profile for 
B = 0.2. 

(1964) (for a grid of rods) and by Lau & Baines (1968) (for a screen), who showed 
that for K > 1 the kinetic energy in the outer part of the boundary layer will 
tend to increase with distance from the wall since the boundary-layer Auid 
suffers a smaller loss in total head than the ffuid outside when passing through 
the screen. For K values less than about 2.0 there should be no jet coaIescence, 
so gauze 111 ( K  = 1.16) was next fitted to  the same formers. The resulting 
velocity profile is shown in figure 8. There is a scatter of, at most, 1 % of the 
mean velocity and this is probably caused by screen inhomogeneities. How- 
ever, within the experimental accuracy the agreement is satisfactory and would 
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FIGURE 9. Velocity variation downstream of gauze I1 ( K  = 3.68) shaped to give h = 0.7 
[with B = 0.415, equation (14)]. x ,  measurements; __ , required h = 0.7 profile; 
--- , theoretical profile for B = 0.2. 

be best for a value of B somewhere between 0.2 and the value calculated 
from (14). 

These results highlight the problems discussed previously, but encourage 
one to believe that the theory is satisfactory for low shears, as was expected. 
In practice, of course, substantially higher values of h are usually required 
and the second stage of the experimental programme was designed t o  test 
the theory for a typical high value of the shear. Gauze I1 ( K  = 3-68) was 
fitted in the channel to the shape required by the theory to give a linear shear 
profile defined by h = 0.70 and in this case inclusion of the s term was necessary 
(but see 0 5 ) .  The velocity profile produced by this gauze is shown in figure 9. 
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Although, since K > 2, there is probably some jet coalescence, it is not serious 
as the shear developed is relatively large. The scatter is, in fact, about 2 %  
of the centre-line mean velocity, which is comparable with that shown in 
figure 7. Clearly the required shear ( A  = 0.70) has not been produced and the 
profile is only roughly linear over the central 70 % of the channel. Agreement 
with the theoretical velocity profile calculated for B = 0.2 is somewhat better, 
but the results shown in figure 7 suggest that this is an unlikely value for the 
deflexion coefficient for gauze I1 ( K  = 3.68). It seems more probable that the 
theory becomes inadequate for such a large value of A. This inadequacy is 
more clearly demonstrated in figure 10, which shows the velocity profile gener- 
ated by gauze I1 ( K  = 1.16) fitted to the same formers as were used for the 
previous case. Although the proiile is reasonably linear it is very different from 
the computed profile, even with B = 0.2. To force any agreement would require 
a B value substantially less than 0.2, which, as shown in figure 8, is highly 
unlikely. It is just possible that the lift coefficient may be a strong function 
of gauze inclination. However, Davis (1957) found experimentally that for 
angles of incidence up to a t  least 25” the deflexion coefficient is almost constant. 
On the other hand, there was no direct relation between B and K ,  which there 
would be if B were a function of wire diameter and spacing only, so that either 
B depends on some additional screen parameter (like the ‘ripple’ in the wires) 
or variations in manufacture from screen t o  screen affect B much more severely 
than K. The difficulty of deciding the proper value (or variation) of B is 
certainly a severe problem in any application of the theory, but the most likely 
reason for the large discrepancies between theory and experiment shown in 
figures 9 and 10 is simply that, as anticipated in $ 3 ,  the theory breaks down at 
high values of A. 

5. Discussion and concluding remarks 

by writing 
As stated in $ 3, Elder (1959) ‘linearized’ the cos28 occurring in the AH in (5) 

y = K cos28 = yo(l fS). 

Now Livesey & Laws (1973) have correctly pointed out that s is in fact a 
second-order term in 8, so that the correct first-order solution should not include 
it. On that basis they omit the s term altogether and apparently achieve better 
experimental agreement even for a highly curved screen. Their conclusion, which 
is unfortunately confused by some analytical errors and a downstream velocity 
profile that fails to satisfy continuity, was that ((the discrepancy between theory 
and experiment.. .has been shown to  be attributable to  the inclusion of a second- 
order term in the essentially first-order theory”. But in the case of EI linear 
downstream velocity profile, Maul1 (1969) clearly demonstrated that the s = 0 
(first-order) theory was not adequate for large shear. For a highly curved screen 
the s term is of similar magnitude to the other terms (as Livesey & Laws 
explicitly state) so in principle it should be included in any comparison with 
experiment. However, as shown in $ 3 ,  the approximations made in the gauze 
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FIGURE 10. Velocity variation downstream of gauze I1 ( K  = 1.16). x , measurements; 
-, theoretical profile for B = 0.306 [equation (14)]; ---, theoretical profile for 
B = 0.2. 

boundary conditions lead to errors which are, in fact, larger than the s term 
itself for only moderate screen inclinations, so that these other neglected terms 
should also be included. It is in this sense that a solution including only the 
s term is a 'pseudo ' second-order solution. The present experimental results 
confirm that including the s term alone is not sufficient. Its effect is to  reduce 
the gauze inclination (figure 2) whereas the experiments indicate that for large 
shear the screen is not curved sufficiently to develop the required velocity 
profile (figure 10). Neglecting the s term could quite possibly improve the agree- 
ment with experiment in certain cases as the work of Livesey & Laws (1973) 
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seems to show, but this would be entirely fortuitous and is in no way a better 
theoretical approach for the case of high screen curvature.-f 

We have tried to include some of the neglected terms in the numerical 
solution but, for reasons which are rather obscure, this appeared to be very 
difficult. A more thorough attack on a full second-order solution would possibly 
be successful, but for the reason given below there is no guarantee that this 
would yield better agreement with experiment and we do not feel it  to be worth 
while. What is clear is that the basic first-order solution can only properly be 
applied for relatively low values of the shear parameter h (more strictly h / K )  
and there is no simple way of improving the situation. This is unfortunate since 
i t  considerably reduces the usefulness of the theory at  least for the common 
practical case of relatively large linear shear. 

In  addition to this fundamental theoretical limitation there is the practical 
difficulty of the deffexion coefficient B discussed in 3 4. Even if an accurate 
second-order solution could be obtained there would still be considerable un- 
certainty about the proper value of B. Indeed, particularly for a highly curved 
screen, there is a distinct possibility that B should vary over the height of the 
screen and this would make the formulation of even a first-order solution much 
more difficult. It would appear therefore that the use of curved gauzes for the 
production of linear shear profiles is somewhat limited ; one is reduced to using 
the theory as a first guess (preferably with s = 0 )  and then either accepting the 
resulting profile if it  is linear over a usable range, or adjusting the shape 
empirically as Maul1 (1969) did. In  general, the shear developed will be consider- 
ably smaller than anticipated, even if the s term is excluded from the calcula- 
tions. 

Since there are also bound to be inhomogeneities of at least 1 %  in the 
resulting profile, even if a ‘high-tolerance ’ screen material is used, it seems that 
there is a good case for seeking an alternative technique for producing linear 
shear ffows. One promising method has been described by Kotansky (1966) 
and was used (in conjunction with grids) by Rose (1970) in his studies of the 
structure of a homogeneous turbulent shear flow. However, further work is 
required to demonstrate that the method, which involves shaping a block of 
honeycomb, is capable of producing a high shear with very low turbulence levels. 

This work was undertaken at the Marchwood Engineering Laboratories of 
the Central Electricity Generating Board and is published by kind permission 
of the Director. Thanks are also due to Dr A. G. Robins for several helpful 
comments during the course of the work, to Mr E. Day, who successfully over- 
came the practical problems of mounting curved gauzes, and to the referees, 
who made several helpful suggestions. 

t A referee has inquired about the agreement between the theory and experiment of 
Lau & Baines (1968) ; the above considerations seem to provide an explanation. Figure 2 
shows that their neglect of an important term in the second boundary condition (discussed 
in 0 3) leads to gauze shapes somewhat more curved than Elder’s theory suggests even 
without the s term. A somewhat coincidental agreement with experiment is then quite 
possible. 
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Appendix A. The numerical solution of (8) 
For convenience we re-state the equations to be solved : 

aD 

BTq = C a, sin nny, 
1 

W 

u+, - q + (1 - B)  (u-, - q)  = ~ , C O S  nny, (A2) 

u-,-u+, = yo(q--1)++yos. (A 3) 

Turner (1969) outlined the procedure for solving these equations but, in common 
with Livesey & Laws (1972) and Chan (1971), the present author found initial 
difficulties associated with convergence of the iterative scheme and the final 
results do not agree with those of Turner (see figure 2) so it is worth while to 
describe the procedure in a little detail. 

For the usual case of the gauze shape required to produce a given downstream 
shear profile (not necessarily linear) from a given upstream profile (not neces- 
sarily uniform), u-, and u, are both known and fixed functions of y. q is found 
from (A3) (putting yo = IC and s = 0 for the first iteration) and the left-hand 
side of (A 2) is computed : 

F(7)  = 21, - q + ( 1 - B)  (up, - a) .  
In  order to determine the coefficients a,, P(y) is written as a Fourier cosine 
series; i.e. 

F ( y )  = n o  A/nF(5 )d5+  :Z(cosnC/)i'(C)cos n nCdC] 

(5 = q). Continuity requires that 

The terms a, are therefore given simply by 

a, = 2J: ~ ( 7 )  cos nny dy. 

These are computed and substituted into ( A l )  to give BTq and hence T .  Note 
that it is not necessary to  write q = 1 in BTq (as do Elder 1959; Turner 1969) 
but the numerical results have shown that such an assumption is reasonable. 

The calculation of T enables new estimates to be made of 

yo = Jo1 K cos20dy 

and = ( ~ / y , )  cos2 e - 1, 

and these are used in (A3) to update the values of q. The process is repeated 
until T (and hence yo) has converged. First attempts at this procedure showed 
that yo, instead of converging, oscillated and it was obvious that some form of 

45-2 
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relaxation scheme was necessary. The simplest method is to write 

Yoi = C~oyoi + (1 - c )  Yoi-1 

si = GS( + ( 1  -c)Si-l, and 

so that new values of yo and s used in the next iteration are weighted by some 
fraction 1 - c of the old values. This was the technique employed by Chan (1971) 
and it works for most cases of practical interest, provided that h/K is not too 
large. In  the latter case even very small values of c (0.1, say) were not sufficient 
to ensure stability and it appeared to be a general feature of the solution tech- 
nique that if hlK was greater than, say, 0.2 relaxation schemes were very 
difficult to  apply successfully. As mentioned in Q 3, Livesey & Laws (1972) have 
shown that in fact for certain screen parameters (8) only admit imaginary 
solutions. For example, for the case of a linear screen, tan 8 G T = constant, 
s = 0, yo = Kf( 1 + T 2 )  and the velocity profile is given by 

U, - 1 = (2EBT/n) log Cot 4 ~ 7 ,  (-44) 

where E = 3/0/(2+yo-B), 

so specifying this downstream profile and solving the equations for tan 8 in- 
volves solving, effectively, 

C = 2EBT/n = (2KBT/n){K+(2-B)( l+T2)) - l .  

Now (A4) is not very different from a linear shear profile defined by 

u,-1 = h(q--*), 
where h 21 4C, so real solutions for T only exist if 

B2K2 2 &(2-B)(2-B++)  n2h2. 

Using (14 )  this implies that h/K should satisfy 

h/K Q 0.18. 

for the usual range of K (1 < K < 4). So, in addition to the limit on h/K set 
by the size of the error terms ( Q  3) it  is in fact impossible to solve the equations 
at all if h/K exceeds about 0.2. This explains the increasing instability of the 
iterative scheme as h/K approaches this value. 

Appendix B. The analytic solution of (8) for the case s = 0 

shear profile downstream, defined by u,  - 1 = h(7 - *), (8) simplify to 
For the particular case of a uniform upstream flow (up, = 1 )  and a linear 

m 

BT = an sin nnq 
n 

m 

n 
and 

where E = Kf(2 + K - B )  and we have written BTq = BT; the term including 
the variation of resistance s has been dropped and the solution of these equations 

(WE) (7 - $1 = X ancos n n ~ ,  (B 2 )  



Production of a linear shear $ow using gauze screens 709 

is equivalent to the first iteration in the complete numeriwl solution (ap- 
pendix A). Elder (1959) showed that 

but unfortunately his expansion of the integral is incorrect, as previous authors 
have pointed out (Maul1 1969; Lau & Baines 1968). Now 

 log tan it dt = log tan t dt = I ,  say, 
n o  

and standard texts give 

I = iw log iw - iw + *(iw)3+ &.a(4W)5+ o ( W 7 )  

provided that 0 < &w < &IT. In this case w never exceeds m (its value at y = L),  
so that the expansion is valid and can be integrated directly to give the gauze 
shape. The result is 

X I L  = (4A/EBn3) C{(iW)-, 1% &wl - {%iW)-,l + {&(iW)*l+ {*(&w)61 + 0(w8)1* 
(B 3) 

This is the result given by Lau & Baines (1968), except that there appears to be 
a printing error in their paper since log iw is written as log w. Unfortunately, 
their plot of the gauze shape does not agree with this expression. Maul1 (1969) 
attacked the problem rather differently. He expanded rq - Q as a Fourier cosine 
series to  determine the coefficients a,, but the result is mathematically identical 
to (B 3). 
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